検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 5 件中 1件目~5件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Follow-up experimental study on causes of the low-enthalpy failure observed in the reactivity-initiated-accident-simulated test on LWR additive fuels

三原 武; 垣内 一雄; 谷口 良徳; 宇田川 豊

Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10

Test OS-1, the reactivity-initiated-accident (RIA) -simulated test on 64 GWd/tU high burnup fuel with ADOPT$$^{TM}$$ (chromia-and-alumina-doped UO$$_{2}$$) pellets resulted in a failure at the lowest fuel enthalpy increase among the tests ever performed at the NSRR on high burnup fuels from 40 to 65 GWd/tU. Roles of both fuel pellets and cladding behaviours in this remarkable observation are being investigated. A comparative RIA-simulated test OS-2 was thus performed on undoped fuel that had been base-irradiated in the identical fuel assembly with the OS-1 rod. The transient records acquired during Test OS-2 indicated that the rod survived without fuel failure. Radially projected hydride lengths in the cladding metallic layer were evaluated from the metallograph images observed in the vicinity of the OS-2 test rod and compared with other failure test cases. The comparison suggested that the hydride morphologies affected the low failure limit of the OS-1 rod and also explains the survival of the OS-2 rod, to some extent. Nevertheless, as the OS-2 rod survived 100 J/g higher peak fuel enthalpy than the OS-1 failure limit, further experimental and analytical studies are desired to pursue other possible causes: additional loading specific to ADOPT$$^{TM}$$ pellets, difference in the pellet/cladding bonding condition, and so on.

論文

Raman investigation of the CLADS-MADE-02 test debris to confirm the mechanism of the volatile and non-volatile boron compounds formation

Pshenichnikov, A.; 永江 勇二; 倉田 正輝

Proceedings of TopFuel 2021 (Internet), 12 Pages, 2021/10

The results of the several recent tests performed in JAEA/CLADS are outlined in this paper. However, particular point of this work is focused on the interesting effect that was found on the debris, that contained partially reacted B$$_{4}$$C (control blade debris). A Raman investigation of the control blade metallic debris helped to refine the governing mechanism of the B-compounds formation and transport, which is probably specific mostly for BWRs due to unique bundle configuration and materials morphology. All these factors may directly influence the accident progression in BWR and influence the final debris properties.

論文

Study on mechanism and threshold conditions for fuel fragmentation during loss-of-coolant accident conditions

成川 隆文; 宇田川 豊

Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10

To clarify the mechanism and temperature threshold for fuel fragmentation during loss-of-coolant accidents (LOCAs), out-of-pile heating tests on bare fuel pellet pieces taken from a high-burnup PWR UO$$_{2}$$ fuel rod (segment average burnup: 81 GWd/tU) were performed. The fuel pellet pieces taken from various regions in the radial direction of the fuel pellet were inductively heated with no cladding restraint in vacuum up to 1473 K at a rate of 5 K/s. During the heating tests, the fission gases released from the fuel pellet pieces were continuously analyzed in-situ using a quadrupole mass spectrometer. Following the heating tests, microstructural observation of the fuel pellet fragments was carried out. Based on the relationship between the extent of fuel fragmentation and the terminal temperature, and the time history of fission gas release, temperature thresholds for minor fuel fragmentation and slightly more fuel fragmentation were estimated to be 973 - 1073 K and 1173 - 1273 K, respectively. The extent of fuel fragmentation and the amount of fission gas release became more pronounced with increasing temperature. Further, the microstructural observations after the heating tests revealed that most of the fuel fragments smaller than approximately 500 - 750 $$mu$$m have microstructures consisting of many micropores and subgrains, which are characteristic of the dark zone or high-burnup structure. On the basis of these results, the mechanism of fuel fragmentation during LOCAs was discussed.

論文

Simulation of the effect of radially oriented hydride precipitates on failure limit of high-burnup BWR fuel cladding under PCMI loading

谷口 良徳; 三原 武; 宇田川 豊

Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10

Scattering of hydride precipitates in a fuel cladding tube was simply modeled by mapping of multiple cracks in finite element system based on the image-processed hydride morphologies observed in post-test cladding samples and the mechanical interactions of these cracks were simulated by damage mechanics calculation. This is a part of ongoing efforts to analyze the effect of the radially oriented hydride precipitates in the cladding tube on the fuel-failure limit observed in Test OS-1: a reactivity-initiated accident (RIA)-simulated test on the BWR fuel with additives irradiated to 64 GWd/tU, which resulted in a fuel failure with the lowest failure limit among the tests ever performed at the NSRR for high burnup BWR rods. The LS-1 test fuel rod, with similar burnup to the OS-1 rod, was selected as another RIA-simulated test rod to be compared with. Sensitivity was examined for damage model parameters, which dominate strain level at which a finite element becomes softened and finally loses its load-carrying capacity, and two sets of plasticity model parameters calibrated for irradiated and unirradiated materials. In the calculation, large stress concentration occurred in the regions between the tips of two adjacent cracks, and one pair of such cracks, typically one of the longest radial cracks existing in the outer periphery of the cladding, then linked to form a longer crack. The simulated macroscopic circumferential strain at failure of the OS-1 cladding model was lower than that of the LS-1 cladding model by about 40% or more. Limited sensitivity of the damage and plasticity model parameters, observed for the investigated range, suggests that the reduction of failure strain primarily reflects the difference in crack distributions between the two simulated rods. The results support the interpretation that the radially oriented hydrides contributed to the low PCMI-failure limit observed in Test OS-1.

論文

OECD/NEA benchmark on pellet-clad mechanical interaction modelling with fuel performance codes; Influence of pellet geometry and gap size

Soba, A.*; Prudil, A.*; Zhang, J.*; Dethioux, A.*; Han, Z.*; Dostal, M.*; Matocha, V.*; Marelle, V.*; Lasnel-Payan, J.*; Kulacsy, K.*; et al.

Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10

The NEA Expert Group on Reactor Fuel Performance (EGRFP) proposed a benchmark on fuel performance codes modeling of pellet-cladding mechanical interation (PCMI). The aim of the benchmark was to improve understanding and modeling of PCMI amongst NEA member organizations. This was achieved by comparing PCMI predictions for a number of specified cases. The results of the two hypothetical cases (1 and 2) were presented earlier. The two final cases (3 and 4) are comparison between calculations and measurements, which will be published as NEA reports. This paper focuses on Case 3, which consists of eight beginning of life (BOL) sub-cases (3a to 3h) each with different pellet designs that have undergone ramping in the Halden Reactor. The aforementioned experiments are known as the IFA-118 experiments and were performed from 1969 to 1970. The variations between cases include four different pellets dimensions (7, 14, 20 and 30 mm of height), two different gapsizes between pellet-cladding (40 and 100 microns) and three variations on pellet face geometry (flat, dishing and dishing with chamfer). Such diversity has allowed exploring the codes sensitivity to these individual factors.

5 件中 1件目~5件目を表示
  • 1